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Principles of Neutron Coincidence Counting

N. Ensslin

16.1 INTRODUCTION

The quantity of uranium or plutonium present in bulk samples of metal, oxide,
mixed-oxide, fuel rods, etc., can ofien be assayed nondestructively by neutron coin-
cidence counting. This powerful technique exploits the fact that neutrons from spon-
taneous fission or induced fission are emitted essentially simultaneously. In many cases
it is possible to obtain a nearly unique signature for a particular nuclear material. The
measurement can be made in the presence of neutrons from room background or (a.n)
reactions because these neutrons are noncoincident, or random, in their arrival times.

Table 11-1 in Chapter 11 summarizes the spontaneous fission neutron 'yields and

ultxphcmes of r many 1sotopes important in the nuclear fuel cycle. For plutonium, the
table shows that 238pu, 240Py, and 24?pu' have large 'spontaneous fission yields. For
uranium, there are no large yields; however, 238U in kilogram quantitiés will have a
measurable yield. Spontaneous ﬁssnon is usually accompamed by the simultaneous
emission of more than one neutron.' Thus an' instrument that is sensitive only to
coincident neutrons will be sensitive only to these isotopes. The quantity of these
particular isotopes can be determined even if the chemical form of the material yields
additional single neutrons from (a,n) reactions. Then, if the isotopic composition of the
material is known, the total quantity of glutomum or uranium can be calculated.

For a plutonium sample containing 2 240py. and ?42Pu, the observed coincidence
response will be due to all three: isotopes. However, 240py; is usually the major even
isotope present in both low-burnup plutonium (~6% 2‘“’Pu) and high-burnup, reactor-
grade plutonium (~15 to 25% 240py). For this reason it is convenient to define an
effective 2%0Pu mass for coincidence counting by

20py ¢ = 2.52 B8py + 24°Pu + 1.68 22py . (16-1)

Plutonium-240(eff) is the mass of 24CPu that would give the same comadence response
as that obtained from all the even isotopes in the actual sample. Typically, 2 Pueﬁ is2to
20% larger than the actual 24°Pu content. The coefficients 2.52 and 1.68 are determined by
(a) the relative spontaneous fission half-lives of each isotope (Table 11-1), (b) the relative
neutron multiplicity distributions of each isotope (Table 11-2), and (c) the manner in
‘which these muluphcntles are processed by the coincidence circuitry (see for example
Ref. 1). The relative spontaneous fission yields are the dominant effect. The coefficients
given above are appropriate for the shift register circuitry described later in this chapter,
but would change only slightly for other circuits.
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Passive counting of spontaneous fission neutrons is the most common application of
neutron coincidence counting. However, because fission can be induced, particularly in
fissile isotopes such as 23%Py and 235 U, a sample containing large quantities of fissile
isotopes can be assayed by coincidence counting of induced fissions. The induced
coincidence response will be a measure of the quantity of fissile isotopes present. If the
fissions are induced by an (a,n) neutron source, the coincidence cu'cult can d1scnmmate
the induced correlated sighal from the uncorrelated source.

Passive and active neutron coincidence counters have found many applications in
domestic and international safeguards, as described in Chapter 17. Coincidence
counters are usually more accurate than total neutron counters because they are not
sensitive to single neutrons from (a,n) reactions or room background. However, the total
neutron count rate can provide information that complements the coincidence informa-
tion. For a wide range of material categories, it is generally useful to measure both the

coincidence response and the total neutron response

16.2 CHARACTERISTICS OF NEUTRON PULSE TRAINS

~Asan aid to.understanding coincidence counting it is helpful to consider the train of
electronic pulses. produced by the neutron detector. These electronic pulses, each
representing one detected neutron, constitute the input to the coincidence circuit. This
input can be thought of either as a distribution of events in time or as a distribution of
time mtervals between events, whichever is more convement In any case, the observed
distribution is produced by some combination of spontaneous ﬁssmns induced fissions,
{o,n) reactlons, and external background events. As menuoned in Secnon 16 1, fission
events usually yield multiple neutrons that are correlated or comcrdent in time, whereas
(a,n) reactions and background events yleld smgle neutrons that are uncorrelated or
random in time. .

16. 2 1 Ideal and Actual Pulse Trains

An ideal neutron pulse train containing both correlated and uncorrelated events
‘might look like train (a) in Figure 16.1."An:actual pulse train detected by a typical
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Fig. 16.1 Neutron pulsetrains as they might appear on a time axis. (a) An
‘ " idealized pulse train containing correlated and uncorrelated
events. (b) An actual pulse train observed at high counting rates
using a detector with typical efficiency and die-away-time
characteristics.
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neutron coincidence counter will look more complex, as shown by train (b) in Figure
16.1. This is because the neutron coincidence counter design affects the pulse trainin
several ways.

First, large samples can usually be accommodated in the central well of the coin-
cidence counter. One kilogram of plutonium containing 20% 2%0Pu will emit about
200 000 n/s. Ifthe coincidence counter has a typical detection efficiency of 20%, the total
neutron count rate will be 40 000 n/s, and the mean time interval between detected
events will be 25 ps. Second, the typical efficiency e = 20% of a coincidence counter is
substantially less than 100%, so that the majority of emitted neutrons are not detected.
Most spontaneous fissions are also not detected. If n coincident neutrons are emitted,
the probability of detecting k is given by '

P(nk) = ek (1—e)r % | (16-2)

n!
(n—k) k!

If in this example two neutrons were emitted (close to the mean spontaneous fission
multiplicity of 2.16 for 240py), the probablhty P(2,0) of detecting no neutrons is 0.64.
The probability P(2,1) of detecting one neutron is 0.32 and the probability P(2,2) of
detecting two neutrons is 0.04. Thus more than half of all fission events are never
detected, and most of those that are detected register only one neutron. Actual detected
bursts of two or more neutrons are relatively rare, occumng only 4% of the time in the
above example. Third, many of the apparent coincidences in the observed pulse train
will be due to accidental overlaps of background events, background and fission events,
or different fission events.

‘A fourth important effect is the finite thermalization and detectlon time of the
neutrons in the polyethylene body of the well counter. The process of neutron modera-
tion and scattering within the counter can require many microseconds of time. At any
moment the process can be cut short by absorption in the polyethylene, the detector
tube, or other materials, or by leakage out of the counter. The process can also be
prolonged by neutron-induced fission leading to additional fast neutrons that undergo
moderation and scattering before they in turn are absorbed. As a consequence of all of
these processes, the neutron population in the counter dies away with time in a complex,
gradual fashion after a spontaneous fission occurs. To a good approximation this die-
away can be represented by a single exponential: ‘

N(t) = N@Q)e™V* (16-3)

where N(t) is the neutron population at time t, and 7 is the mean neutron lifetime in the
counter, the die-away time. Die-away times are determined primarily by the size, shape,
composition, and efficiency of the neutron coincidence counter, but are also slightly
affected by scattering, moderation, or neutron-induced fission within the sample being
assayed. Typical values for most counter geometries are in the range of 30 to 100 ps.
Thus the finite die-away time of the neutron coincidence counter causes the detection of
prompt fission neutrons to be spread out over many microseconds. For large samples
and typical counters, the mean lifetime may be comparable to or longer than, the mean
time interval between detected events.
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As a result of the four effects described above, an actual observed pulse train may
contain relatively few “real” coincident events among many “accidental” coincident
events. Also, the real events will not stand out in any obvious way from the background
of accidental events in the pulse train, as illustrated in train (b) in Figure 16.1. In order to
visualize and quantify real and accidental events, it is helpful to use the interval
distribution or the Rossi-alpha distribution.

16.2.2 The Interval Distribution

The interval distribution is the distribution of time intervals between detected events.
This distribution is given by (Ref. 2):

1) = exp[-[§, QUMO] . S 64

I(t) is the probability of detecting an interval of length t, and Q(t) is the probability of a
second event as a function of time following afirsteventatt = 0. Forarandom neutron
source the probability of a second event is constant in time. If the total count rate is T
n/s, the normalized interval distribution is I(t) = Te™ Tt In this case the interval
distribution is exponential, and the most likely time for a followmg event to occur is
immediately after the first event. On a semilogarithmic scale the interval distribution
will be a straight line. If real coincidence events are present in addition to random
events, the interval distribution is given by a more complex equation (Ref, 3). Figure
16.2 illustrates an interval distribution that contains both coincidence and random
events.

LOG OF NUMBER OF EVENTS
"

LENGTH OF TIME INTERVAL

Fig. 16.2 Aninterval distribution formed by real coincidence events R
and accidental events A. The slope of the accidental distribu-
tion on this semilogarithmic scale is the total count rate T.
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16.2.3 The Rossi-Alpha Distribution

The Rossi-alpha distribution (Ref. 4), developed for reactor noise analysis, is another
useful distribution. This distribution is obtained by starting a clock at t = 0 with the
arrival of an arbitrary pulse. The clock continues to run, and each succeeding pulse is
stored by a multiscaling circuit in a bin corresponding to its arrival time. A typical bin
width might be 1 ps, and the total number of time bins available might range from 1024
1o 4096. When the end of the total time interval is reached, the clock is stopped and the
circuit remains idle until another event restarts the process at t = 0 again. Thus the
Rossi-alpha - distribution is the distribution in time of events that follow after an
arbitrarily chosen starting event. If only random events are being detected, the:distribu-
tion is constant with time. If real coincidence events are also present, the Rossi-alpha
distribution is given by

S(t) = A + Re™¥® | (16-5)
S(t) is the height of the distribution at time t; A is the accidental, or random, count rate;
R is the real coincidence count rate; and < is the detector die-away time. Figure 16.3

illustrates a Rossi-alpha distribution with R, A, and other variables (defined later)
labeled. The exponential die-away of fission events is clearly seen in this distribution.

16.3 BASIC FEATURES OF COINCIDENCE CIRCUITS

16.3.1 Electronic Gates

Coincidence circuits often contain electronic components called “one-shots” or “gate
generators” that produce an output pulse of fixed duration whenever an input pulse is
received. Gate generators used to convert the input pulses from the neutron detector
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Fig. 16.3 A Rossi-alpha distribution showing detected neutron events as a
Junction of time following an arbitrary starting event. R repre-
sents real coincidence events, and A represents accidental coin-
cidence events. P. = predelay, G = prompt and delayed gates,
D = longdelay, andt = die-away time.
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into very short output pulses are called “triggers.” Gate generators used to convert the
input pulses into long output pulses are called “gates.” Such gate generators, as well as
amplifiers, detectors, and other circuits, exhibit an electronic deadtime before they can
function again: This deadtime is at least the length G of the gate. Dependmg on. the
design, thls deadtime can be nonupdating or updatmg

16.3.2 Updating and Nonupdating Deadtimes

A nonupdating, or nonparalyzable, deadtime is illustrated in pulse train (a) in Figure
16.4. Of the four events, events 1, 2, and 4 initiate gates, but event 3-does not and is lost.
Using Equation-16-4; it can be shown that for.a true random input rate T, the measured
output rate Ty, is

T

Tm= T3G7

(16-6)

As the input rate becomes very large, the output rate will approach the limiting value
1/G, where G is the gate length.

An updating, or paralyzable, deadtime is illustrated in pulse train (b) in Figure 16.4.
The appearance of event 3 causes the gate produced by event 2 to be extended or
updated. Consequently, event: 4 does not generate a new gate. Only events 1 and 2
initiate gates, and events 3.and 4 are lost, Using Equation 16-4, it can be shown that for
random events

Tn = _TC—GT . e

As the input rate increases, the output rate increases up to a maximum value (which
occurs when the input rate is 1/G) and then declines toward 0 (approaches paralysis) as
the input rate continues to increase. For input rates that are small, identical deadtime
corrections are obtained from Equations 16-6 and 16-7.

n ﬂ H n INCOMING EVENTS

1 2 3 4 TIME

(@) ! l r l I I ggLZ%EZ%T\:G DEADTIME
1 2 4 TIME
® | | | UPDATING DEADTIME

1 2 : TIME

Fig. 16,4 Two gate generators with different electronic deadtime
characteristics: (a) nonupdating deadtime; (b) updating deadtime.
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16.3.3 Cross-Correlation and Autocorrelation Circuits

Electronic one-shots or gate generators can be-.combined with scalers in many possible
ways to create coincidence circuits. Each combination will be subject to different
electronic deadtimes and will require different equations for-analysis. ‘For neutron
counting, cross-correlation or-autocorrelation circuits are the most useful (Ref. 5). A
simple cross-correlation measurement is shown .in circuit (a) in Figure 16.5. Trigger
pulses from detector 1 are compared with gates generated from detector 2. This type of
circuit is most useful for very fast detector.pulses and short gates because discrimination

against detector nmse is good and because very few accidental comcxdences are
produced.

Circuit(b) in Flgure 16. 5 1llustrates an xdeahzed autocorrelanon measurement Both
detector inputs are first combined into one pulse train. Then every pulse in the train
generates both a short trigger and a long gate, so that every pulse can:be compared with
every following pulse. Autocorrelation circuits are best suited for thermal-neutron
counters because many detector banks can be summed together for high efficiency and
because the substantial die-away time of the neutrons causes many: overlaps between
detector banks. Gate lengths are.chosen to be c‘omparable to the die-away time, and-a
separate, parallel circuit with a.delayed trigger or gate is usually used for the subtracnon
of accidental coincidences (see Sections 16.4 and 16.5).

The autocorrelation circuits described in Section 16.4 and 16.5 are: the most lmpor-
tant circuits for neutron coincidénce countmg,

DETECTOR
1

SCALER

DETECTOR GATE
2 GENERATOR

(a) CROSS-CORRELATION

DETECTOR TRIGGER
1
AND SCALER
e
DETECTOR | | GATE
[ AR GENERATOR

(b} AUTOCORRELATION

Fig, 16.5 Two types of coincidence circuits: {a) cross-correla-
tion; (b) autocorrelation.
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- 16.4 THREE COMMON COINCIDENCE CIRCUITS

16.4.1 Variable Deadtime Circuit

The variable deadtime circuit, or VDC, was developed in Europe for the assay of
plutonium wastes (Refs. 6 through 8). It is a simple circuit (see Figure 16.6), but requires
a complex analysis. The variable deadtime circuit consists of one short gate, typically 4
ps, that records most fission and accidental events, and one long gate, typically 32 t0 128
us, that misses most fission events but counts most accidental events. The difference
between the two scalers is a measure of the rate of fissions, Both gates are nonupdating,
so the net coincidence rate R, using Equation 16-6, is approximately given by '

8y S,

ReT=s6G, " T=s8, ° (163)

Here S, is the count rate in the scaler attached to the short gate, whose length is G, and
S, is the count rate in the scaler attached to the long gate, whose length is G,.

Equation 16-8 is useful only at.count rates of several kilohertz or less because it does
not treat the interference between fission and accidental events correctly. (More
complex expressions are given in Refs. 9 and 10.) Additional difficulties arise when
induced fissions in the sample cause longer fission chains (Refs. 11 and 12). For this
reason the variable deadtime circuit is not practical for the assay of large, multiplying
samples.

16.4.2 Updating One-Shot Circuit

An updating one-shot circuit (Ref. 10) is illustrated in Figure 16.7. The first half of the
circuit generates prompt coincidences between a gate of length G and a short trigger.
These coincidences consist of real coincidences (R) and accidental coincidences (A). In
order to correct for these accidental events, it is necessary to add a long delay and then
measure coincidences between a second, delayed gate of length G and the original short

SHORT
GATE SCALER 1
SUMMED INPUT
FROM DETECTORS
L—  LONG GATE SCALER 2

Fig. 16.6 A variable deadtime circuit (VDC).
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INPUT PREDELAY GATE |1 LONG DELAY [—{ GATE .
AND AND
TOTALS R+A A
SCALER SCALER SCALER

Fig. 16.7 Updating one-shot circuit. The two one-shots are of equal length.

trigger. If the long delay (D) is much longer than the mean neutron lifetime t in the
detector, the second coincidence circuit will measure only accidental events (A). The net
coincidence response R is then given by the difference between the two scalers. Figure
16.3 illustrates this process.

Figure 16.3 also shows that an actual measurement of a Rossi-alpha distribution will
be subject to several limitations: (a) pulse pileup and electronic deadtimes will perturb
the distribution near t = 0, so it is customary to begin analysis at time P, the predelay;

- (b) because the distribution of real events extends beyond the gate interval G, some real
coincidences are missed by the prompt gate; (c) in principle, some real events may
appear in the delayed gate if D is not long enough. Taking these limitations into account,
the true coincidence response of the updating one-shot circuit is given by :

(R+A) scaler — (A)scaler GT 16-9
e TH(1 — e Oy — ¢ DTON] e (16-9)

The exponential in the numerator, derived from Equation 16-7, is the correction for the
triggers lost during the updating gate G. This large correction limits the usefulness of this
circuit to count rates of 20 to 30 kHz or less. Nonupdating one-shot circuits have been
built (Refs. 13 and 14), but they are also limited to low count rates.

16.4.3 Reduced Variance Logic

One interesting neutron coincidence circuit has its origins in the field of reactor noise
analysis, which is the study of the fluctuations in the count rate of neutron detection
systems. From these fluctuations it is possible to calculate the moments of the neutron
count distribution (Feynman variance technique) (Ref. 4). The reduced variance logic
(RVL) circuit applies this technique to the assay of nuclear material (Refs. 15 and 16).

The RVL circuit collects total neutron counts C over a short time interval of 100 to
2000 ps, depending on the application. This measurement is repeated for a large number
of time intervals until a reasonable assay time of 100 to 1000 s is reached. From these
measurements the circuit calculates the first moment C and the second moment C? of
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the count distribution. The variance-to-mean ratio of the count distribution is given by
(.6[ — C%/C. For random counts that follow the Poisson dlsmbuuon this ratio is
unity.

If correlated events are present, the parameter

~2 _ /2
Yy = -C—(_Ti — (16-10)

will be nonzero. This parameter is dependent on sample multiplication and independent
of the spontaneous fission rate in the sample. Another combination of momeits that is
proportional to sample mass is

Q=C -C-C . (16-11)

Q is independent of the random, uncorrelated background and is proportional to the
coincidence countrate R. -

The RVL circuit generates the parameters Q and Y for each sample assayed. For
small, nonmultiplying samples, the effective 24°Pu mass of the sample is obtained from
Q alone. For samples that exhibit significant self-multiplication, the 2%Pu mass is
obtained indirectly from a nonlinear plot of Y as a function of (Q/2%Pu,) obtained
with standards of known mass. A correction to Equauon 16-11 for electromc deadtlme
at high count rates is given in Ref. 17.

In:field applications, RVL circuits have been used to identify highly multiplying
samples (Ref. 18). In fixed plant applications, a computer-based analysis system can be
added to obtain higher moments of C and a time interval distribution of the counts, In
principle, the RVL circuit uses the same count distribution and provides essentially the

. same assay information as the shift register circuit described in the following section. In
practice, the RVL circuit in its present state of development requlres more.complex data
interpretation algorithms and is limited to lower rates.

16.5 THE SHIFT REGISTER COINCIDENCE CIRCUIT

16.5.1 Principles of Shift Register Opération

In the preceding section it was noted that some common coincidence circuits require
large corrections for electronic deadtime. Such corrections are required because coin-
cidence analysis begms with one event at t = 0 and continues until t = G, the gate
length. If n events arrive within a time G, the first event will start the gate and the other
n — 1 will be detected. A second gate cannot be started until a time of length G has
passed, thus creating a deadtime of that length. , ;

An alternative approach is to store the incoming pulse train for a time G, so that every
event can be compared with every other évcnt for a time G. In effect, every pulse
generates its own gate; it is not necessary for one gate to finish before the next can start.
This storage of events eliminates the deadtime effect described above and allows
operation at count rates of several hundred kilohertz or more,
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It is possible to store incoming pulses for a time G by means of an integrated circuit
called a shift register. The circuit consists of a series of clock-driven flip-flops linked
together in stages. For example; a 64-stage shift register driven by a 2-MHz clock (0.5
us/stage) defines a gate G of length 32 ps. Incoming pulses “shift” through the register
one stage at a time and the whole process takes 32 ps.

- This deadtime-free shift register concept was introduced by Boehnel (Ref 5) Versions
of the circuitry have been developed by Stephens; Swansen, and East (Ref. 19) and
improved by Swansen' (Refs. 20 and 21) and, most recently, by Lambert (Ref. 22). At
present the shift register circuit is the most commonly used. circuit for domestic and
international coincidence counting applications. Examples are given in Chapter 17,

16.5.2 The R+A Gate

Operation of the shift register coincidence circuit is best visualized by referring to the
Rossi-alpha distribution of Figure 16.3. This figure shows a prompt gate G that collects
real and accidental coincidences (R+A) and a delayed gate G that collects only
accidental coincidences (A). The two gates are separated by a long delay D. Note that
coincidence counting does not begin until a short time interval P (the predelay) has
passed. During this time, typically 3 to 6 ps, the Rossi-alpha distribution is perturbed by
pulse pileup and electronic deadtimes in the amplifiers, and the true coincidence count
rate cannot be measured. After the predelay, the prompt R+A gate is defined by a shift
register that is typically 32 to 64 us long.

A simplified diagram of a shift register circuit that" measures R+A events 1s illustrated
in Figure 16.8. The input (not illustrated) is the logical OR of all the amplifier-
discriminator outputs, thus creating an autocorrelauon circuit. Every input event, after
the predelay P, passes into and through the shift reglster Also, every event entering the
shift register increments an up-down counter, and every event leavmg the shift’ regxster
decrements the up-down counter. Thus the up-down counter keeps a continuous record
of the number of events in the shift register. Every input pulse, before it enters the

INPUT ' SHIFT REGISTER
PREDELAY FORR + A GATE

upP UP-DOWN DOWN
> COUNTER

DATA

STROBE R+A
SCALER

Fig. 168 4 simplified block diagram of a shift register coincidence
circuit that measures real + accidental (R+A) events.
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predelay and the shift register, also causes the up-down counter to add its contents to the
R+A scaler (strobe action).

The above sequence of events ensures that isolated, widely spaced events will never be
registered in the R-+A scaler. However, if two events appear with a time separation
greater than P but less than P + G; then one event will be in the shift register (and the
up-down counter will have a count of 1) when the other event strobes the contents of the
up-down counter into the R+A scaler. Thus a coincidence will be recorded, as required
by Figure 16.3. Note that if three or more events are present within the prescribed time
interval, the counting algonthm will record all possible pairs of coincidences between
events. For example,

For the following number ...the number of recorded
of closely spaced events... coincidences will be
0 0
1 0
2 1
3 3
4 6
n n(n— 1)/2 (16-12)

The possible permutations in counting twofold coincidences can exceed the number of
events. In practice this counting algorithm is neither benefi¢ial nor harmful, but merely
a consequence of treating all events equally.

The coincident events discussed above can represent two or more neutrons from one
spontaneous fission (real fission event) or just the random overlap of background
neutrons or neutrons from different fissions (accidental events). Thus the counts
accumulated by the circuit described above are called R+A counts.

16.5.3 The A Gate

Real fission events R can be determined indirectly by adding a second complete shift
register circuit that measures accidental events A. This circuit is identical to the R+A
circuit except that a long delay D is introduced between the shift register that defines the
A gate and the input event that strobes the contents of the up-down counter into the A
scaler. The delay D is usually long compared to the detector die-away time so that no
neutrons from fission events neart = 0 are still present, as illustrated in Figure 16.3. A
common choice for D is approximately 1000 pus, which is very long compared to typical
die-away times of 30 to 100 us. When D is this long, the A scaler will record only
accidental coincidences. These include random background events, uncorrelated over-
laps between fission and background events, and uncorrelated overlaps between dif-
ferent fission events. The number of accidental events registered in the A scaler will be,
within random counting fluctuations, ‘the same as the number of accidental events
registered in the R+A scaler if both the A and the R+A shift registers are exactly the
same length in time. Then the net difference in counts received by the two scalers is the
net real coincidence count R, which is proportional to the fission rate in the sample.
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In practice the circuit that measures accidentals can be formed by introducing a
second, delayed shift register circuit or by introducing a second, delayed strobe. The
latter approach is used in recent circuit designs (Refs. 20 through 22) for simplicity and
because it is easy to produce A and R+A gates of the same length. Figure 16.9 (Ref. 23) is
a block diagram of a recent shift register coincidence circuit design that includes totals
(T), R+A, and A scalers.

The A scaler records accidental coincidences between the total neutron events
recorded, and the following relationship is true within random counting fluctuations:

A=GT? , o (16-13)

where A and T are expressed as count rates, and G is the coincidence gate length (Ref.
24). This nonlinear relationship shows that A will exceed T when the total count rate is
greater than 1/G. By means of Equation 16-13 it is possible to calculate A rather than
measure it. However, it is better to measure A with the circuit described above because
this corrects continuously and automatically for any change in the total neutron count
rate during the assay. Equation 16-13 can then be used later as a diagnostic check for
count-rate variations or instrument performance.

16.5.4 Net Coincidence Response R

From Figure 16.3 and the above discussion the true shift register coincidence response
is related to the measured scaler outputs by the equation

(R+A) scaler — (A) scaler

- (16-14)
e Pl (- e—G/‘!)[l - e'(D"‘C')/T]
LOGIC INPUT DATA _ — —
™1 SYNCHRONIZER SHIFT REGISTER ™ SHIFT REGISTER [ ]
o PREDELAY SELECTOR GATE LENGTH
: (1.0-32.5 us)
RESET - (8, 16, 32, 64, 128 )
CONTROL
\ - o - -
QND sonten | Ljup-oown counter|
UP|  (0-98 COUNTS)  [Down
| R
PRESET TIMER K
(1-9 x 10° s) =L '
+*
ACCIDENTAL ACS&?\E:;AL
SCALER :
(10 DIGITS). {10 DIGITS)
)
STROBE |smoss
1024 ys DELAY

Fig. 16.9 Block diagram of a complete shift register coincidence circuit including '
totals, R+A, and A scalers (Ref. 23).
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Equation 16-14 is identical to Equation 16-9 except that the large exponential deadtime
correction is not reqmred for the shift register. Smaller corrections for amplifier
deadtimes are given in Section 16.6 below. The term [I — e~P*9/%) should be very
close to unity if the delay D is much longer than the detector dle-away time 1.
Consequently, this term will be dropped in the following discussions.

In Equation 16-14, R represents the total number of coincidence counts that could be
obtained if finite predelays, gate lengths, or delays were not required. In practice it is
customary to keep P, G, and D fixed and allow for their effects in the process of
calibration with known standards. Then R = (R+A) scaler — (A) scaler is considered
to be the true, observed coincidence response. An important equation that relatés R to
the physical properties of the sample, the detector, and the coincidence circuit can be
derived from Equations 16-2, 16-12, and 16-14 (Refs. 5 and 25):

- Remyu @73 ﬁss‘°nsl°rs)eze“’/'(1 —e—G/‘)z P o a615)

where

R = true coincidence count rate

My = 240Pu-effective mass of the sample
& = absolute detector efficiency
= gpontaneous fission neutron multiplicity
P(v) = multiplicity distribution
P = predelay

G = coincidence gate length
T = detector die-away time.

Equation 16-15 illustrates again that the response of the shift register circuit to v
closely spaced events is proportional to v(v — 1)/2, ‘whereas the response of a conven-
“tional circuit would be proportional to (v — 1). For practical values of € and v, the
differences are not great and are automatically accounted for in the calibration process.
In Section 16.5.2 it was shown that the expression v(v — 1)/2 represents the sum of all
twofold coincidences for v closely spaced events. Thus the shift register collects all
possible valid coincidences. The response of the circuit is still linear with respect to
sample mass. However, the sample self-multlphcatwn effects described in Section 16.8
below do affect shift reglster circuits more than conventional circuits, so that the shift
register circuits require larger correction factors.
Equation 16-15 provides a means of deterrmmng the detector die-away time 7. If the
same sample is assayed in the same way at two different gate settings G, and G,, where
G, is twice Gy, with. the coincidence results. Rl and R,, respectively, then

1= —=G/m®yR; — 1) . (16-16)
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16.6 DEADTIME CORRECTIONS FOR THE SHIFT REGISTER

In the preceding section it was shown that the coincidence gate length G does not
introduce deadtimes into the shift register circuit, which permits operation at count rates
above 100 kHz. At such high rates, however, a number of smaller deadtimes associated
with the analog and digital parts of the circuitry become apparent. These include v

e detector charge collection time

o amplifier pulse-shaping time

e amplifier baseline restoration time

¢ losses in the discriminator OR gate

o shift register input synchronization losses.

These deadtime effects can be studied with time-correlated californium neutron
sources, with uncorrelated AmLi neutron sources, and with new digital random pulsers
(Ref. 26). Even though the deadtimes can often be studied singly or together, the total
effect is difficult to understand exactly because each deadtime perturbs the pulse train
and alters the effect of the deadtimes that follow. This section summarizes what is
presently known about these deadtimes. Overall empirical correction factors are given,
and several electronic improvements that reduce deadtime are described.

16.6.1 Detector and Amplifier Deadtimes

For most shift register systems in use today, the analog electronic components consist
of (a) gas-filled proportional counters, (b) charge-sensitive preamplifiers, (c) amplifiers,
and (d) discriminators. As described in Section 13.2, a charge signal can be obtained
from the gas counter within an'average time of 1 to 2 ps after the neutron interaction.
This time dispersion is limited by variations in the spatial position of the interaction
site, and is not actually a deadtime. However, the ability of the detector to resolve two
separate pulses will be comparable to the time dispersion. The preamplifier output puise
has a risetime of about 0.1 ps, and the amplifier time constant is usually 0.15 or 0.5 ps. If
all of the electrical components listed above are linked so that one preamplifier and one
ampliﬁer with 0.5-us time constant serve seven gas counters, a total deadtime of about 5
ps is observed (Ref. 27). In practice this deadtime is reduced by using multiple
preamplifier-amplifier chains, as described in Section 16.6.4.

The amplifier output enters a discriminator that consists of a level detector and a
short one-shot. The one-shot output is 50 to 150 ns long.

16.6.2 Bias Resulting from Pulse Pileup

In addition to actual deadtimes, the electrical components can produce a bias in the
shift register output. Bias is defined as the difference between the R+A and A counting
rates when a random source such as AmLi is used. For a random source the difference
(R+A) — A should be zero; if it is not, the percent bias is 100 R/A. Possible sources of
bias include electronic noise; uncompensated amplifier pole zero; shift register input
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capacitance;a deadtime longer than the predelay P; or amplifier baseline displacement
following a pulse, which is the most important source of bias if the electronic compo-
nents are properly adjusted to minimize the other sources. Any closely following pulses
that fall on the displaced baseline before it is fully restored to zero have a different
probability of triggering the discriminator. Bias resulting from pulse pileup is propor-
tional to the square of the count rate and may become noticeable at high count rates. If
the baseline is not fully restored in a time less than the predelay time, the effect will
extend into the R+A gate and a bias will result.

Figure 16.10 (Ref. 28) illustrates a bias measurement as a function of predelay. The
measurement used a coincidence counter with six amplifier channels. The observed bias
was reduced to an acceptable value of 0.01% or less for predelay settings of 4.5 us or
more. These results are typical for well-adjusted electronics. For some high-efficiency
and long die-away-time counters that operate at rates above 100 kHz, a conservative
predelay setting of 6 to 8 us may be warranted, but in general 4.5 ps is sufficient. At high
count rates, R is typically on the order of 1% of A: a pulse pileup bias of 0.01% in R/A
implies a relative bias of 1% in R, a bias that is only barely acceptable. ‘

16.6.3 Digital Deadtimes

Because of the deadtime in the amplifier-discriminator chain, it is customary to
divide the detector outputs of a coincidence counter among four to six amplifiers. Each
amplifier channel may serve three to seven detectors. The discriminator outputs of each
channel are then “ORed” together before they enter the shift register (autocorrelation
mode). Now the deadtime after the OR gate is much less than before provided the two
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Fig. 16.10 Shifi register coincidence bias R/A as a function of predelay P for electronics with
0.5 us time constant, as measured with a strong random AmLi neutron source.
For this measurement, bias was minimized by using optimum values of 100 kQ
Jor the amplifier pole-zero resistance and 68 pF for the shift register input
synchronizer capacitor. Sensitivity to any remaining bias was maximized by
using an 8-us coincidence gate G for the measurements (Ref. 28).
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events are from different channels. The deadtime contribution of the OR gate itself can
be calculated under the assumptions that (a) no losses occur within a channe!l because of

the longer preceding amplifier deadtime and (b) losses between channels are due to pulse
overlap. C

nn—1)

OR gate overlap rate = 7

2(disc. output width)(T/n)?, (16-17)

where n is the number of channels and T is the total count rate. The ideal deadtime for
an OR gate accepting 50-ns-wide pulses is then

OR gaté deadtime = 2 (50ns) . (16-18)

n

This deadtime is for total events; the coincidence deadtime has not been calculated but
would be larger. ,

The output of the OR gate is a digital pulse stream that enters the shift register. At this
point the 50-ns-wide pulses must be synchronized with the 500-ns-wide shift register
stages. The limit of one pulse per stage means that some closely following pulses will be
lost unless a' derandomizing buffer (Section 16.6.5) is used. These losses have been
measured with a digital random pulser, as illustrated in Figure 16.11. The shape of this
curve isgiven by

measured totals = (1 — e PT)/p (16-19)

where p is the shift register clock period (500 ns in this case) and T is the total input rate
(Ref. 29). At low rates, Equation 16-19 yields a nonupdating deadtime of p/2; at high
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rates, the deadtime approaches p. The coincidence deadtime is:on the order of 2p, as
described in Ref. 29. In general, the synchronizer deadtime is small compared to the
amplifier deadtime, but it can be appreciable at high count rates. For example, at 256
kHz the totals losses will be 6% and the corresponding coincidence losses will be larger.

16.6.4 Empirical Deadtime Correction Formulas

The total effect of the analog and digital deadtimes described above has not been
calculated, but can be determined empirically with californium and AmLi neutron
sources. The coincidence deadtime 3, can be determined by placing a californium source
in a fixed location inside a well counter and measuring the coincidence response as
stronger and stronger AmLi sources are introduced. During these measurements it is
important (1) to center the sources so that all detector channels observe equal count rates
and (2) to keep the sources well separated so that scattering effects are minimized. The
result of such a measurement is shown in Figure 16.12. Within measurement uncertain-
ties the overall coincidence deadtime is well represented by the updating deadtime
equation (Equation 16-7). The totals deadtime §, can be measured by the source addition
technique, where two californium or AmLi sources are measured in the counter; first
separately and then together An updatlng deadume equation also works well for the
total count rate correction, Blas can be measured by placing only random AmLi souroes
in the counter. -

Under the assumption that the electromc components have been adjusted SO that bias
is negligible, as discussed in Section 16.6.2, the overall empirical deadtime correction
equations are

T(corrected) = Ty, et Tm - (16-20)
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Fig. 16.12 Semilogarithmic plot of relative coincidence
response from a californium source as a function of
increasing totals count rate resulting from additional
AmLi sources. The points are measured values; the. -
line is a least-squares fit to an exponential with
deadtime coefficient8, = 2.4 s (Ref. 24).
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Rcorrected) = R, e’ Tm : (16-21)

where T, is the measured totals rate and R, is the measured coincidence rate, (R+A)
scaler — (A) scaler. Note that in Equations 16-20 and 16-21 the argument of the
exponential contains T, instead of the corrected rate T that appears in Equation 16-7.
The use of Ty, is a convenient approximation at rates up to about 100 kHz, but at higher
rates this approximation forces 8, and §; to become functions of the count rate rather
than constants. Valaes of 8, and & appropriate for the amplifier chains and 2-MHz-clock
shift registers most commonly used today are summarized in Table 16-1 (data compiled
from Refs. 27, 30, and 31). For example, six channelsiof 0.15-us time-conistant amplifiers
will have 8, = 0.62 s and will exhibit an overall coincidence deadtime of about 6% at
100-kHz counting rates.

From Table 16-1 it is apparent that the deadtlme coefficient depends weakly on the
detector gas mixture and strongly on the number of amplifier channels available. The
number of detector tubes per amplifier channel has no measurable effect on the
coefficients, although this situation may change if the detector tubes are subject to count
rates in excess of about 20 kHz per tube. Note that all of the coinmdence deadtime
coefficients in Table 16-1 were measured with a californium source (v.=3.757) whereas
the isotope usually assayed is 24°Pu (v = 2.16). The effect of this difference is not yet
known

16.6.5 AMPTEK Electronics and Derandomizing Buffer

Recent improvements in the analog and digital electronics include faster amplifiers,
shorter discriminator outputs, and a derandomizing buffer at the shift register input
(Ref. 31). The faster amplifier, which has an effective time constant of about 0.15 ps,
consists of a Model A-111 hybrid charge-sensitive preamplifier, discriminator, and pulse
shaper manufactured by AMPTEK, Inc., of Bedford, Massachusetts, This.unit provides
sufficient gain and signal/noise ratio if the 3He detector tubes are operated at +1700 V.

Table 16-1. Compilation of empmcal deadumc coefficients for shxﬁ-reglster-based comcldence counters
(Refs. 27, 30, 31)

3He Amplifier . .
Detector Number of Numberof = Time ‘ Deadtime ()
Gas Detectors/ .  Amplifier Constant - Coincidence, 8, i Coincidence, 3¢
Additive Channel = Channels (us)  Totals,8; 0-100kHz - 0-500 kHz
Ar+CH, 7 6 0.5 0.6 24 23+ 16X 1076 Ty,
Ar+CHy 7 4 05 0.87 30 28+27X1076 Ty,
Ar+CHy 7 2 05 29 47 : ‘
Ar+CHy 7 1 0.5 49 12,6
5% CO, 7 6 0.5 0.9 i1
Ar+CHy 3 6 0.15> 0.16 0.62 0.62+0.20X 1075 T,

81 os Alamos-designed 0.5-us time-constant amplifier chain (Refs. 22, 23).
DAMPTEK A-111 integrated circuit with approximately 0.15-ps time constant in conjunction with a derandomiz-
ing buffer on the shift register input (see Section 16.6.5).




476 . N. Ensslin

The Model A-111 has been incorporated with other electronics on a printed circuit board
mounted in a small shielded enclosure. Each enclosure contains an amplifier insensitive
to external noise, an LED output monitor, a discriminator output shortened to 50 ns,
and connections for “ORing” multiple channels together. Six channels of A-111 units
can be operated with a reduced predelay of 3 ps with less than 0.01% bias.

The derandomizing buffer holds pulses that are waiting to enter the shift register, thus
eliminating the input synchronization losses described in Section 16.6.3. Input pulses
separated by less than 0.5 us—the shift register clock period—are stored in.a 16-count
buffer until the shift register can accept them. This circuit eliminates the coincidence
deadtime of roughly 1.0 ps associated with: the shift register input and permits counting
at rates approaching 2 MHz with virtually no synchronizer counting losses. However, as
the derandomizing buffer stretches pulse strings out in time, it may create strings longer
than the predelay and thereby produce a bias. Because the AMPTEK A-111 amplifier
requires a predelay of only 3 us, the maximum recommended totals rate for less than
0.01% bias is 500 kHz.

With the AMPTEK electronics and the derandomlzmg buffer, the coincidence
deadtime is reduced by a factor of 4 to about 0.6 ps, as noted in Table 16-1. This
combination permits passive assays of almost any plutonium samples, with crmcahty
safety of the sample in the well being the only limit.

16.7 UNCERTAINTIES RESULTING FROM COUNTING
STATISTICS

In principle the effect of counting statistics on the coincidence response is very
complex because the input pulse train contains both random and correlated events and
because correlated events can overlap in many ways. Some of the complicating factors
are described briefly in this section. For practical coincidence counters these factors are
not large, and it is usually possible to calculate measurement uncertainties for coin-
cidence counting with the simple Equation 16-23 given in Section 16.7.1 below.

The major factor that complicates measurement uncertainties is the nonrandom
distribution of neutrons from spontaneous fission. Random neutrons from background
or (o,n) events follow a Poisson distribution: for n counts, the variance is n and the
relative error is 6,/n = \/var(n)/n = 1/v/n. However, if a spontaneous fission source
emits a total of T neutrons in S fissions, with T = 9S where - v is the mean fission
multiplicity, the relative error is 1/1/S rather than 1/1/T. The number of spontaneous
fissions follows a Poisson distribution, but the total number of neutrons does not. This is
because the emission of more than one neutron per fission does not provide any more
information to reduce the measurement uncertainty.

Boehnel (Ref. 5) has shown that counting n spontaneous fission neutrons with an
efficiency & has a variance
va;(n) 14 v?

(16-22)

<l

If v approaches 1 or & approaches 0, the variance approaches the Poisson distribution
value of var(n) = n, but always remains larger. Equation 16-22 implies that the
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measurement uncertainty will depenid on the multiplicity of the fission source, the
fraction of random events (v = 1) present, and the detector efficiency. Other complicat-
ing factors are the detector die-away time and the total count rate, which affect the degree
to which events overlap. Coincidence counting will then introduce additional complica-
tions. ~

16.7.1 Simple Error Equation for the Shift Register

For practical values of n and &, the deviations from the Poisson distribution are not
large, as suggested by Equation 16-22 and pulse train (b) in Figure 16.1. If the (R+A)and
(A) registers are assumed to be uncorrelated and to follow the P01sson distribution, the
relative error is

6R VR+A)+A VR +2A
R R R

(16-23)

This approximation has been compared with a wide variety of actual measurements and
is usually correct to within 15% for plutonium oxide and 25% for californium. Since
other uncertainties often limit assay accuracy, it is usually sufficient to know the
statistical uncertainty to this level. More exact equations are given in Ref. 5.

Using Equation 16-13, the above uncertainty equation can be rewritten as

6R VR +2GT2
- RV (16-24)

where R and T are deadtime-corrected count rates (Equations 16-20 and 16-21), and t is
the count time. In this form, Equation 16-24 is valid for the variable deadtime and
updating one-shot circuits as well as for the shlﬁ register, as confirmed by measurement
(Ref. 10). '

Since R is proportional to (1 — ¢G/%), the optimum value of gate length G that
minimizes the relative error for a given die-away time 7 can be derived by dlﬂ‘erennatmg
Equation 16-24. The result is

= 7(e0/* — 1)/2 = 1.257t . o (16-25)
16.7.2 Uncertainties for Passive and Active Counting

In passive neutron coincidence counting, the measured total response is proportional
to smmt, and the measured coincidence response is proportional to szmz.wt where
My is the 240Py-effective mass and t is the count time. The statistical measurement
uncertainty (Equation 16-23 or 16-24) is then proportional to

6R  Vikmyy + 2k,G mysy’
- 4
R eMye\/t

(16-26)
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where k, and k, are two-constants-of-proportionality. For very small samples the relative
error is proportional 10 1/1/myy; for large samples the relative error is independent of
sample mass. In either case the relative error is proportional to 1/e, which implies that
the efficiency of the passive well counter should be as high as possible.

Active assay of uranium samples can be carried out with the Active Well C01nc1dence
Counter (AWCC), which uses AmLi sources to induce fissions in 23U (see Section
17.3.1). For the AWCC the statistical measurement. uncertainty  is again given by
Equanon 16-23 or 16-24. The coincidence response is proportional to €2 mj;s t S, where
my;s is the 235U mass, t is the count time, and S is the AmLi source strength. Although
the totals response is increased by these induced ﬁssnons, the effect is small in practice
and for error calculations it is reasonable to assume that the totals response 1s directly
proportional to €St. Then

oR \/k1m2358 + 2G’k282
o
R am23sS\/t—

(16-27)

where k; and k, are two constants of proportionality. For large uranium masses and
weak sources, the relative error is proportional to 1/1/m;3,S, as expected. For strong
sources, the relative error is proportional to 1/emj3s.

This last relationship has several interesting consequences. First, the relatlve error is
independent of source strength for sources large enough to ensure that R is much less
than A. This feature has the advantage that the sources need only be large enough to
meet this criterion, which in practice has been measured.as 2 X .10* n/s (for two
sources, negligible background, and no passive signal from the sample)(Ref. 32).
However, this feature has the disadvantage that assay precision cannot be improved by
introducing larger sources. Once G, &, k;, and k, are determined by the design of the well
counter, the assay premswn can only be varied by varying the counting time. Second, the
absolute assay precision is almost independent of sample mass and is determmed
primarily by the accidental coincidence rate. "For the AWCC described in Ref, 32, the
absolute assay precision in the “fast conﬁguratlon for 1000-s count times is eqmvalent
to 18 g of 235U.

16.8 EFFECTS OF SAMPLE SELF-MULTIPLICATION |

Among the effects that may perturb passive coincidence counting, self-multiplication
of the coincidence response resulting from induced fissions within the sample is usually
dominant. This self-multiplication takes place in all plutonium samples and (to a lesser
extent) in all uranium samples. Passive coincidence counters respond to induced
fissions as well as to spontaneous fissions. Thus the response from a given amount of
spontaneously fissioning material is multiplied and appears to indicate more nuclear
material than is actually present. This section describes the magnitude of this-effect for
plutonium and provides a self-multiplication correction; factor that is useful for some
assay situations.
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16.8.1 Origin of Self-Multiplication Effects

There are two common internal sources of neutrons that induce fissions. One source
is the spontaneously ﬁssioning isotopes themselves. For example, neutrons emitted by
240py may be captured by 23%Pu nuclei and induce these nuclei to fission. The
spontaneous fission multiplicity v, = 2.16, and the thermal-neutron-induced fission
multiplicity v; = 2.88 (from Table 11-1). The coincidence circuitry cannot in practice
distinguish between these two multiplicities so that both types of fissions may be
detected. . . :

The other common source of neutrons is from (o,n) reactions with low-Z elements in
the matrix. For example, in plutonium oxide, alpha particles from 238Pu may react with
170 or 180 to create additional neutrons that may induce fissions in 23%Pu. The (o,n)
neutrons, with multiplicity-1, do-not-in-themselves produce-a coincidence response;
however, the induced fission neutrons, with multiplicity v; = 2.88, do. The magnitude
of this coincidence response depends on the alpha emitter source strength, the low-Z
element density, the degree of mixing between alpha emitters and low-Z elements, the
fissile isotope density, and the geometry of the sample, and in general is not proportional
to the quantity of the spontaneously fissioning isotopes that are to be assayed.

The multiplication of internal neutron sources by induced fission is the same process
that eventually leads to criticality. What is surprising is the appearance of multiplication
effects in the assay of relatively small samples whose mass is far from critical. Even 10-g
samples of plutonium metal show 5% enhancements in the coincidence response. At
4000 g of plutonium metal, not too far from criticality, the multiplication of the total
neutron output is roughly a factor of 2 and the multiplication of the coincidence
response is roughly a factor of 10.

The magnitude of self-multiplication effects on the passive coincidence assay of PuO,
cans is illustrated in Figure 16.13 (Ref. 33). The data show a definite upward curvature,
and the deviation from a straight line determined by the smallest samples amounts to
about 38% at the largest sample, 779 g of PuO,. In the past, self-multiplication effects
have often been masked by presenting data without electronic deadtime corrections or
by drawing a straight line that seems to pass through most of the data even though the
slope does not fit the smallest samples. The latter error is most easily avoided by
tabulating coincidence response per gram, as in column 3 of Table 16-2. The following
sections discuss other features of Table 16-2 that describe self~-multiplication corrections
applied to the data. e T ‘ ‘

16.8.2 Calculational Results

Self-multiplication within a sample can be calculated by Monte Carlo techniques. The
results of calculations done for the samples listed in Table 16-2 are given in columns 5 to
9. These calculations were carried out with the Monte Carlo code described in Ref. 33;
however, the detector itself was not modeled in detail since it was necessary to obtain
only the net leakage multiplication across a surface surrounding the sample. The Monte
Carlo code selected initial (o,n) or spontaneous fission neutrons according to the ratio

o = Ny/vN, | (16-28)
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where N, is the number of (a,n) reactions and N is the number of spontaneous fissions.
The values for a, obtained from Equation 16-32 or 16-35, are given in column 4 of Table
16-2. Each neutron-induced fission chain was followed to its end. The Monte Carlo code
calculated the leakage multiplication M; (defined in Chapter 14), which is related to the
probability of fission p by the relation
1 —p
M T —pv, | (16-29)

The calculated values of M; are given in column 5 of Table 16-2. These are the ratios by
which the total neutron count is enhanced by multiplication, with leakage, absorption,
fission, and reflection taken into account. For simplicity, the leakage multiplication is
denoted by M in the remaining discussion.




Table 16-2. Self-multiplication correction factors for the plutonium oxide samples in Figure 16.13. Columns 5 through 9
are based on Monte Carlo calculations, and columns 10 and 11 are based on the R/T ratio

1 2 3 4 5 6 7 8 9 10 1
Sample 2%0Py-  Coincidence Leakage Correction = Corrected
Mass  Effective  Response/ Mult., Factor, Response/ From R/T ratio
(® (%) g-s a M fse fun CF g-s L
20 6.0 2.35(2) 0.66 1.02(1) 2.31(3)
60 6.4 2.42(2) 1.43 1.005 0.024 0.020° ~ -1.04(1) 2.32(3) . 1.003 1.03
120 6.4 2.53(2) 1.36 1.010 0.049 0.035 1.08(1) 2.33(3) 1.012 1.08
480 7.8 2.99(3) 0.74 1.28(1) 2.344) - 1.044 1.26
459 9.5 2.98(3) 0.64 1.046 0.192 0.068 1.26(1) 2.36(4) - 1.048 1.28-
556 9.9 3.03(3) 0.62 1.049  0.215 0.075 1.29(1) 2.35(4) 1.043 1.25
615 10.6 3.08(3) 0.60 1.056  0.260 0.084 1.34(1) 2.30(4) 1.052 1.30
779 10.4 3.26(3) 0.61 1.061 0.285 0.095 1.38(1) 2.36(4) 1.070 1.41
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The Monte Carlo code also calculated a coincidence correction factor
CF =1+ fs+ 1, . (16-30)

where 1 + f is the coincidence correction for net multiplication of spontaneous
fission neutrons, and f,, is the additional correction for net multiplication of (a,n)
neutrons. In Table 16-2, columns 6 and 7 show the relative size of these two induced-
fission multiplication effects for the plutonium oxide samples measured. Column 8
shows the overall correction factor CF, and column 9 demonstrates that the corrected
coincidence response per gram is now nearly constant.

With the code described above, a series of reference calculations were made to
determine the effect of sample mass, density, isotopic composition, and water content
on the coincidence correction factor. The results are plotted in Figure 16-14 (Ref. 33). All
calculations represent variations about an arbitrary nominal sample of 800-g PuQ,, with
a density of 1.3 g oxide/cm?>. This sample contains 706 g of plutonium at 10% Z%OP“eﬂ'
and 1 wt% water, in an 8.35-cm-i.d. container. For each calculation, only one parameter
was varied from the nominal values. For the mass and density variations, the fill height
was adjusted to conserve mass. For the H,0 content variation, the sample density was
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Fig. 16.14 Monte Carlo calculations of self-multiplication effects of various
parameters on coincidence counting of PuQO;. The solid data points
denote the nominal calculation.
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adjusted to conserve volume. Figure 16.14 shows that coincidence correction factors are
appreciable even at low mass and low density.

The curves'in Figure 16.14 can be used to estimate coincidence correction factors for
other similar plutonium oxide samples. The exact range of applicability is not known.
For the samples in Table 16-2, the correction factors were calculated directly by the
Monte Carlo code, except for the first and fourth samples, Wthh were extrapolated from
Figure 16.14, with consistent results.

16.8.3 Effects on Shift Register Response

It is possible to write expressions for the effects of sample self-multiplication on the
shift register response. The total neutron count rate T, after subtraction of the back-
ground count rate b, is glven by

T — b = myg(473/s-g) e Mv(l + o) (16-31)

where M,y is the effective 24°Pu mass, ¢ is the detector efficiency, M is the leakage
multiplication, v, is the spontaneous fission multiplicity, and o is defined by Equation
16-28. If all other quantmes are known, a can be determined by mvertmg ‘Equation
16-31;

1 4+ a = (T — b)/mys(473/s-g)eMvg .. (16-32)

The coincidence count rate R is given by the f'bllowing equations (Ref. 34):

, V(v — 1)

R = Myap (473/S-g) e 3

F, (16-33)

ve{vg — 1)+ M-1 1+
I+ avg vi—1l 1+ aoav

Vv — 1) = M2[ veviv; — 1)] . (16-34)

where v(v, — 1) and vi(v; — 1) are the reduced second moments of the spontaneous
and induced fission multiplicity distributions.

Equation 16-33 is s1mxlar to Equation 16-15, with F representing the fraction of

coincidences measured, e F/%(1 — e¢~C/%), These equations assume that all fission
chains produced from the original fission appear to be simultaneous within the resolving
time of the coincidence counter. This assumption, called the “superfission concept”
(Ref. 5), is valid for thermal-neutron counters because of their long die-away time.
From Equations 16-31 and 16-33 for T and R, and from columns 5 and 8 of Table
16-2, it is apparent that sample self-multiplication affects coincidence counting more
than totals counting. As a simple example of this effect, suppose that a spontaneous
fission releases two neutrons, one of which is captured by a fissile nucleus which in turn
releases three neutrons upon fissioning. The total number of neutrons has increased
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from two to four (M = 2). However, the coincidence response has increased from one
to six (CF = 6). Thus the ratio R/T has increased with multiplication. Laboratory
measurements have shown that R/T can be used as a measure of multiplication. This
ratio is the basis of the simple self-multiplication correction described in the following
section.

16.8.4 A Simple Correction Factor for Self-Multiplication

Since it is usually not possible to perform a Monte Carlo calculation to determine the
self-multiplication of each sample to be assayed, there is a strong need for a self-
multiplication correction that can be determined for each sample from the measured
parameters R and T. As mentioned earlier, the ratio R/T is sensitive to sample
multiplication so that it is possible to use R for the assay and R/T for a multiplication
correction. The procedure for calculating this correction for plutonium samples follows.

Step 1: Assay a small 10- or 20-g reference sample that, as an approximation, can be
considered as nocnmultiplying. Use the same physical configuration and electronic
settings as those to be used in Step 2 for assay of larger samples. This measurement yields
the values Ry, Ty, and oy. If the nonmultiplying sample is pure metal, a5 = 0.
Otherwise, o can be determined from Equation 16-32 with M = 1. [A multiplying
reference sample can also be used if it is sufficient to obtain relative correction factors
(Ref. 35).]

Step 2: Now assay an unknown multiplying sample that requires a seif-multiplication

correction. This measurement yields R and T. If the sample is pure metal, o = 0. If the
sample is of the same composition as the small reference sample used in Step 1, then
o = dg. If the sample is pure plutonium oxide, then from Tables 11-1 and 11-3 it is
possible to calculate

1020 (2.54 f535 + fpa0 + 1.69 T47)

(16-35)

if the isotopic fraction f of each plutonium isotope and of 2#!Am is known. Equation
11-7 can be used to correct the calculated value of a for the presence of major impurities
that have high (a,n) cross sections if the concentrations of these impurities are known.
For inhomogeneous or poorly characterized plutonium oxide, scrap, or waste where o
cannot be determined by one of the above methods, this self-multiplication correction
cannot be used.

Step 3: Calculate the ratio

_ RT (1t
Ry/Ty (1 + ag)

(16-36)

This ratio will be larger than 1 for multiplying samples w1th M > 1 because sample self-
multiplication increases R more than T. The ratio r is independent of detector efficiency,
die-away time, and coincidence gate length. Note that all count rates in Equatlon 16-36
should be corrected for background and electronic deadtimes.
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Step 4: The leakage muitiplication M is given by
2.062(1 + o)M? — [2.062(1 + o) — 1M ~ r=0. (16-37)

Eﬁuation 16-37 can be derived from Equations 16-33 and 16-34 (Refs. 36 and 37).
Step 5: The c01nc1dence counting correction factor for self-multiplication CF is Mr.
To summarize,

T(corrected for mult.) = T/M
R(corrected for mult.) = R/Mr . . (16-38)

This seif-multiplication correction has no adjustable parameters and is geometry-
independent. For example, suppose that two plutonium samples are brought closer and
closer together. As this occurs, M will increase, the induced-fission chain lengths will
increase, the mean effective multiplicity will increase, and R/T will increase. Equation
16-37 will yield larger values of M, and Equation 16-38 will automatically yield larger
correction factors, Examples are given in Ref. 33 and 1n Figure 17.8.

When Equation 16-38 is used to linearize the calibration curve so that

My = R/KMr (16-39)

then Equations 16-31, 16-36, and 16-39 require that the calibration constant k and the
detector efﬁclency € be related by

k = ev(473/s-g) T—:u + qp) . - (16-40)

This relation is not important in practice because k is usually obtained by calibration,
but it may provide a diagnostic to indicate whether the detector efficiency or the small
reference sample have been properly measured.

16.8.5 Applications and Limitations of the Simple Correction

Although the self-multiplication correction factors given by Equations 16-37 and
16-38 provide a complete correction with no adjustable parameters, the following
assumptions were made in the derivation in order to obtain simple equations: ‘

(1) It was assumed that detector efficiency was uniform over the sample volume. This
is not always the case, but is becoming easier to realize with instruments such as the
upgraded High Level Neutron Coincidence Counter (HLNCC-II) described in Section
17.2.3.

(2) It was assumed that (o,n) neutrons and spontaneous fission neutrons had the
same energy spectra, so that the detection efficiency &, fission probability p, and
induced-fission multiplicity v; would be the same for both neutron sources. In general
this is not the case, although for plutonium oxide the (a,n) and spontaneous fission
neutrons have similar mean energies (2.03 MeV and 1.96 MeV, respectively) but

_different spectrum shapes.
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(3) It was assumed that all fission chains are simultaneous within the die-away time
of the detector. This is not true for neutrons that re-enter the sample from the detector
(reflected neutrons)(Ref. 5).

These approximations introduce errors into the correctlon Values for M given by
Equation 16-37 may differ from values obtained from Monte Carlo codes. Values for the
coincidence correction factor CF = Mr are usually better, presumably because some
errors cancel in the use of ratios. The correction usually gives best fits of 2 to 3% to the
data, which is good but is larger than the measurement relative standard deviation (on
the order of 0.5%).

Applications of the simple self-multiplication correction are glven ‘in Table 16-2,
columns 10.and. 11, and in Figures 17.8, 17.19, 17.20 and 17.22 for plutonium oxide,
metal,-and nitrate solutions. Good results have been reported for plutonium-oxide in

. Ref. 22, for plutonium metal in Refs. 33 and 36, and for breeder fuel-rod: subassembhes
in Ref 38.

‘The above apphcanons show that good results typlcally 2 to 3%, can be ‘obtained with
theself-muluphcauon correction for well-characterized material despite the assump-
tions made in the derivation. However, the need to know .a, the ratio. of (a;n) to
spontaneous fission neutrons, for each sample to be assayed poses a severe limitation on
the applicability of the technique. For scrap, waste, impure oxide, or metal with an
oxidized surface, a cannot be determined. Any error in the choice of a leads to an error of
comparable size in the corrected assay value. In such cases the multiplication correction
should be used only as a diagnostic for outliers. For many classes of oxide, where a may
be somewhat uncertain but sample density and geometry are fixed, Krick (Ref. 39) has
found that two-parameter calibration curves without self-multiplication corrections
provide the best assay accuracy.

The fundamental limitation of the simple multiplication correction is that only two
parameters are measured by each assay, R and T. The number of unknown variables is
at least three: the sample: mass, the sample self-multiplication, and ithe (o,n) reaction
rate. Further improvements in multxphcatlon corrections can be made if coincidence -
counters are built that provide a third measured parameter, such as mple coincidences
(Refs. 23 and 33).

16.9 OTHER MATRIX EFFECTS

The dominant matrix effect in passive neutron coincidence counting is usually the
self-multiplication process described in Section 16.8. If corrections for electronic count-
rate losses and self-multiplication can be properly applied, the coincidence response is
usually linear with sample mass. However, other matrix effects can affect the assay and
may be overlooked at times. These effects are summarized in this section, which is based
in part on Ref. 40.

1. (a,n) contaminants

For plutonium samples the most important (o,n) emitters are oxygen and fluorine.
Fluorine concentrations of 10 to 400 ppm are typical, and oxygen (in water) may be as
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high as several percent. The calculated effect of fluorine and water on the total neutron
count rate is given in Section 14.2.3 of Chapter 14. Such (¢,n) contaminants may bias the
coincidence assay by a few percent. If their concentrations are known, the effects can be
accounted for in the self-multiplication correction.

2. Hydrogen content

The hydrogen in water affects the neutron coincidence response by shifting the
neutron energy spectrum (see Chapter 14, Section 14.2.4). This increases the detector
efficiency and the sample self-multiplication. The former effect can be minimized by
careful detector design, and the latter is:taken into account by the multiplication
correction. : ; o :

3. Container wall effects

Neutron scattering and reflection by the container wall can increase’ detection
efficiency and sample self-multiplication. An increase in the coincidence count rate up
to 7% has been observed. Container effects can be estimated by measuring a californium
source with and without an empty sample can.

4. Influence of uranium on plutonium assay

“The addition of uranium to plutonium (as in mixed oxide) has the following effects:
additional multiplication in 235U; decrease in plutonium multiplication due to a
“dilution” of the plutonium; and additional fast multiplication in 238U. Despite different
239py, 235U, and 238U fission multiplicities, the multiplication correction works well for
mixed plutonium and uranium if there are no additional unknown (a,n) sources.

5. Neutron moderation and absorption (self-shielding)

In plutonium nitrate solutions, moderation leading to increased neutron absorption
has been observed (Chapter 17, Section 17.2.7). In active coincidence counting of
uranium, neutron absorption and self-multiplication are both strong and opposing
effects. The presence of both effects often yields nearly straight calibration curves
(Chapter 17, Figures 17.24 and 17.29).

6. Neutron poisons

Boron, cadmium, and some other elements have high thermal-neutron capture cross
sections and can absorb significant numbers of neutrons. Problems with neutron
poisons have been observed in the active assay of fresh light-water-reactor fuel as-
semblies.
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7. Sample geometry

If the detection efficiency is not uniform over the sample volume, then the coin-
cidence response can vary with sample geometry. Passive counters are now usually
designed so that the whole sample will be in the region of uniform efficiency. For active
coincidence counters, the source-to-sample distance is very important, and consistent
positioning of samples is essential.

8. Sample density

Variations in plutonium oxide density due to settling or shaking during shipping and
handling can affect the passive coincidence response by as much as 10%.* The multipli-
cation correction can take these variations into account for samples of similar compo-
sition if the samples are within the detector’s uniform efficiency region. For active
coincidence counting, density variations affect both self-multiplication and self-shield-
ing. No correction is available.

9. Scrap and waste matrices

Here it is helpful to know what the matrix is and to know which of the above-
mentioned effects might be present. For plutonium-bearing materials, the coincidence
response is usually more reliable than the totals response, but may provide only an upper
limit on the quantity of 24°Pu. In general, it is useful to measure both the totals and the
comcndenoe‘response and to use the totals response or the coincidence/totals ratio as a
diagnostic to help interpret the coincidence response. :
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